大家好,今天小编关注到一个比较有意思的话题,就是关于高通量蛋白检测的问题,于是小编就整理了3个相关介绍高通量蛋白检测的解答,让我们一起看看吧。
协同进化的蛋白之间的相互作用可以通过什么进行高通量预测和分析?
通常蛋白之间的相互作用通过“热区”的氨基酸残基所介导,在蛋白质二级结构单元中,α-螺旋组成了超过30%的蛋白结构域。而在蛋白-蛋白相互作用介面所涉及的α-螺旋多肽甚至超过了50%。因此α-螺旋在蛋白分子识别中至关重要。
模拟蛋白相互作用界面的关键氨基酸残基可以竞争性抑制原蛋白的相互作用,调控下游生物学效应。
通过化学手段稳定多肽α-螺旋构象,可以提高多肽的稳定性与靶点结合能力,为开发新一代针对胞内蛋白-蛋白相互作用的靶向分子提供研究基础。
rna seq 技术全称?
RNA-seq即转录组测序技术,就是用高通量测序技术进行测序分析,反映出mRNA,smallRNA,noncodingRNA等或者其中一些的表达水平。
在过去的十年中,RNA-Seq技术迅速发展,并成为了在转录组水平上分析差异基因表达/mRNA可变剪切的不可缺少的工具。随着下一代测序技术的发展,RNA-Seq技术应用范围变得更加广泛:一是在RNA生物学领域,RNA-Seq可以应用于单细胞基因表达/蛋白质表达/RNA结构的分析;二是空间转录组的概念也逐渐兴起。长读长/直接RNA-Seq技术以及更好的数据分析计算工具有助于生物学家们利用RNA-seq加深对RNA生物学的理解——例如转录何时何地开始;体内折叠和分子间作用如何影响RNA功能等问题。
分子检测原理?
分子诊断技术是指以DNA和RNA为诊断材料,用分子生物学技术通过检测基因的存在、缺陷或表达异常,从而对人体状态和疾病作出诊断的技术。 分子诊断的主要技术有核酸分子杂交、聚合酶链反应、测序技术和生物芯片技术。
(1)核酸分子杂交技术 原理是利用互补的DNA单链能够在一定条件下结合成双链,即能够进行杂交。这种结合是特异的,即严格按照碱基互补的原则进行,它不仅能在DNA和DNA之间进行,也能在DNA和RNA之间进行。杂交的双方是待测核酸序列和探针序列。应用该技术可对特定DNA或RNA序列进行定性或定量检测。
(2)聚合酶链反应(PCR)原理是是利用DNA在体外摄氏95°C高温时变性会变成单链,低温(经常是60°C左右)时引物与单链按碱基互补配对的原则结合,再调温度至DNA聚合酶最适反应温度(72°C左右),DNA聚合酶沿着磷酸到五碳糖(5'-3')的方向合成互补链。基于聚合酶制造的PCR仪实际就是一个温控设备,能在变性温度,复性温度,延伸温度之间很好地进行控制。应用这种技术可放大扩增特定的DNA片段,它可看作是生物体外的特殊DNA复制,PCR的最大特点,是能将微量的DNA大幅增加。
(3)DNA测序技术即测定DNA序列的技术,在分子生物学研究中,DNA的序列分析是进一步研究和改造目的基因的基础。目前用于测序的技术主要有Sanger等(1977)发明的双脱氧链末端终止法和 Maxam和 Gilbert(1977)发明的化学降解法。这二种方法在原理上差异很大,但都是根据核苷酸在某一固定的点开始,随机在某一个特定的碱基处终止,产生 A,T,C,G四组不同长度的一系列核苷酸,然后在尿素变性的PAGE胶上电泳进行检测,从而获得DNA序列。
(4)生物芯片技术又称DNA芯片(DNA Chip)或DNA微阵列(DNA Microarray),是通过微阵列技术将高密度的DNA片段按按一定的顺序或排列方式固定如玻璃片等固相表面,以荧光标记的DNA探针,借助碱基互补杂交原理,可同时对大量基因的结构是否变化、量的多少及表达功能是否异常进行监测。
基因检测中的技术平台相对应的主要有FISH(荧光原位杂交技术),PCR(定量PCR、数字PCR),测序(一代,高通量测序),基因芯片等。
到此,以上就是小编对于高通量蛋白检测的问题就介绍到这了,希望介绍关于高通量蛋白检测的3点解答对大家有用。